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tween the order of the finite difference equation and its
analytical analog [2], to their time reversibility [2, 9, 10],The Störmer–Verlet–leapfrog group of integrators commonly

used in molecular dynamics simulations has long become a text- to oscillating fundamental solutions [11] and to their sym-
book subject and seems to have been studied exhaustively. There plectic property [9, 12, 13]. A hallmark of these method
are, however, a few striking effects in performance of algorithms is a square power growth of global errors with the step
which are well known but have not received adequate attention in

size, which is invariably observed with different testingthe literature. A closer view of these unclear observations results
techniques and can even be used for debugging computerin unexpected conclusions. It is shown here that contrary to the

conventional point of view, the leapfrog scheme is distinguished codes [5]. Because of the low apparent order of approxima-
in this group both in terms of the order of truncation errors and the tion they usually appear less accurate than other methods
conservation of the total energy. In this case the characteristic in comparative studies, but, with large step sizes, when
square growth of fluctuations of the total energy with the step size,

other algorithms loose stability, the leapfrog scheme andcommonly measured in numerical tests, results from additional
its analogs still produce trajectories with very low totalinterpolation errors with no relation to the accuracy of the computed

trajectory. An alternative procedure is described for checking energy energy drift and correct average static and dynamic proper-
conservation of leapfrog-like algorithms which is free from interpo- ties [14–16]. These observations are known and exploited
lation errors. Preliminary tests on a representative model system for such a long time that it seems to have been forgotten
suggest that standard step size values used at present are lower

that actually they are quite unusual and that this behaviorthan necessary for accurate sampling. Q 1997 Academic Press

still has no clear explanation.
The observed persistence of averages and a low drift of

the total energy might mean that the numerical trajectoryI. INTRODUCTION
computed with a large step size, although inaccurate in
a strict sense, holds well to the correct constant energyThe well-known group of integrators for the Newton’s

equations comprising Verlet [1], leapfrog [2], velocity Ver- hypersurface in phase space. It is well known, however, that
compared with other integrators the Störmer-equivalentlet [3], and Beeman [4] methods play a central role in the

classical methodology of molecular dynamics. Due to their algorithms conserve the instantaneous total energy rather
poorly, its value already strongly fluctuates at time stepssimplicity and exceptional stability they proved to be the

best choice for long time, large step size calculations and well below the theoretical limit of stability. Thus, it appears
that the trajectory constantly deviates from the initial hyp-they are now employed in the great majority of simulations

of large systems. All or some of these methods are always ersurface, but always finds a way back, which is rather
striking because, for example, the velocity Verlet algorithmdescribed in detail and compared in any modern textbook

[2, 5, 6]. It is well known that they are based upon a ninety- is self-starting and, consequently, keeps no memory of the
preceding part of the trajectory. One explanation to theseyear-old Störmer time-centered difference approximation

of accelerations [7, 8], that given appropriate initial condi- observations follows from the general property of symplec-
tic integrators which, with a sufficiently small time step,tions they produce the same trajectory in coordinate space

and that, therefore, they all represent variations of a sin- generate discretizations of exact trajectories corresponding
to perturbed Hamiltonians [12]. This property, however,gle algorithm.

Despite this long prehistory, the performance of these holds for small time steps only and it does not explain
why the leapfrog-equivalent algorithms are distinguishedalgorithms still attracts remarkable attention, first, because

of their practical importance and, second, because under- among symplectic integrators as well.
The above contradiction may be settled if one assumesstanding of the origin of their exceptional properties may

help to develop even better algorithms. In particular, their that the total energy is actually conserved better than it
appears. For a Störmer or a leapfrog trajectory this isstability has been attributed to the correspondence be-
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possible, in principle, because in these cases the total en- where xn and an are the coordinate and the acceleration
at the nth time step and h is the step size. The leapfrogergy is not a well-defined quantity. The original Störmer

formula [1, 5] needs only coordinates and accelerations for scheme popularized by Hockney and Eastwood [2] is
computing a trajectory and so, strictly speaking, velocities
are not defined. There are many methods to evaluate veloc- vn11/2 5 vn21/2 1 anh (3a)
ities and kinetic energies but they all employ some finite

xn11 5 xn 1 vn11/2h, (3b)difference approximations and, usually, interpolations,
which is often done implicitly, as in the case of the velocity

where vn11/2 is the half-step velocity. The Swope et al.Verlet and Beeman algorithms [3, 4]. It is understood that
[3] formulation of the algorithm referred to as velocitythese computations may introduce additional errors into
Verlet isthe computed total energy, but these errors are difficult

to evaluate or to get rid of and one cannot generally tell
how large is their relative contribution.

xn11 5 xn 1 Svn 1 an
h
2D h (4a)The initial goal of the present study was to check more

accurately how well a leapfrog trajectory holds to a con-
stant-energy hypersurface, when only approximations in-

vn11 5 vn 1 (an 1 an11)
h
2

. (4b)trinsic to the algorithm play a role and there is no influence
of additional approximations and interpolations. As hap-
pens sometimes, the solution of a practical task has led to Finally, the Beeman method [4],
a comprehensive ‘‘ ab initio’’ analysis of several related
problems which have been unrecognized or simply ignored
in the literature. It is shown here that contrary to the xn11 5 xn 1 vnh 1 S2

3
an 2

1
6

an21D h2 (5a)
conventional point of view, the leapfrog scheme is more
accurate than other algorithms of this group, both in terms
of the order of the truncation errors and the conservation vn11 5 vn 1 S1

3
an11 1

5
6

an 2
1
6

an21D h. (5b)
of the total energy. The observed square growth of fluctua-
tions of the total energy with the step size appears to
result from interpolations only and has no relation to the Instructive discussions of the relationships between these
accuracy of the computed trajectory. An alternative proce- methods can be found elsewhere [2, 5, 10, 17, 18]. The
dure is proposed for checking energy conservation of leap- algorithms defined by Eqs. (2)–(5) significantly differ in
frog-like algorithms which is free from interpolation errors. the implicitly adopted point of view upon the definition of
Testing on an example of protein dynamics confirms that the on-step velocities and, consequently, the total energy.
the leapfrog trajectory really manages to sample from a For the velocity Verlet and Beeman integrators the on-
correct hypersurface in phase space with larger step sizes step velocity vn , kinetic energy Kn and the total energy En
than commonly recommended. are well defined quantities. In contrast, for both the leap-

When a classical text-book subject is discussed it is diffi- frog and the original Störmer algorithms no complete tra-
cult to maintain the logic of argumentation without repro- jectory in phase space is computed and one can choose
ducing some well-known general results. The author hopes, between different interpolation formulae for the calcula-
therefore, to be excused by experts if some of the deriva- tion of on-step velocities or kinetic energies. Because of
tions in the text appear trivial. the reasons given below it is most convenient for us to

take the second choice. Let us consider that our trajectory
II. RESULTS AND DISCUSSION is computed by the leapfrog integrator (3a), (3b). The

coordinates thus obtained automatically satisfy Eq. (2).
We will consider Newton’s equation for a particle of a The corresponding solution of Eqs. (4a), (4b) is obtained

unit mass if we employ the interpolation formula

ẍ 5 f(x), (1)
vn 5

1
2

(vn21/2 1 vn11/2) (6)
where the dot notation denotes time derivatives. The
Störmer fourth order algorithm (the order of the algorithm

and the solution of Eqs. (5a), (5b) withhere and below refers to the order of the truncation error)
first introduced in this field by Verlet [1] is

vn 5
1
6

(2vn11/2 1 5vn21/2 2 vn23/2). (7)
xn11 5 2xn 2 xn21 1 anh2, (2)
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It should be noted that since the Beeman algorithm em- of O(h4). Now let us perform a similar derivation for half-
step velocities, which givesploys coordinates and velocities from several time steps it

is equivalent to the leapfrog algorithm with interpolation
(7) only if its initial conditions match Eqs. (3a), (3b).

When analytical trajectories are described it is common
to use the term ‘‘state’’ to refer to a point in phase space.

v St 1
h
2D5 2v St 2

h
2D2 v St 2

3h
2 D

1 v̈ St 2
h
2D h2 1 O(h4)

(9)
From any state the analytical trajectory can be continued
in a unique way in both time directions. For the following
discussion, it will be convenient to use a similar terminol-
ogy referring to numerical trajectories. Thus, a leapfrog and by substituting
state is defined as a pair (xn , vn21/2), a velocity Verlet state
as (xn , vn), and a Störmer state as (xn , xn21). In each of

v̈ St 2
h
2D5

1
h

[ẍ(t) 2 ẍ(t 2 h)] 1 O(h2) (10)these three cases there exists a unique analytical solution
of Eq. (1) to which these states belong although the corre-
sponding exact trajectories are not identical. we get a fourth-order finite difference equation

vn11/2 5 2vn21/2 2 vn23/2 1 (an21 2 an)h2. (11)A. The Order of Approximation of the Leapfrog Scheme

This very basic and apparently simple question appears It is readily seen that any trajectory produced by the leap-
to be very confused and persistently misinterpreted in the frog scheme (3a), (3b) satisfies this equation, so it is an
literature. Fundamental textbooks always demonstrate exact analog of the Störmer formula (2) for velocities.
that algorithm (2) is accurate to fourth order but add that We see, therefore, that the order of approximation of the
velocities are usually computed with a lower accuracy. leapfrog scheme is four rather than three, both for coordi-
Equivalence between all integrators of this group also ap- nates and velocities. Equations (2) and (11) are common
pears only when low-order approximations are used for fourth-order predictors which use values from several time
velocities [18]. At the same time, Eqs. (3a), (3b) and the steps to reduce the truncation error. The fact that the same
velocity Verlet and Beeman algorithms are only O(h3) trajectory can be generated by lower order Eqs. (3a), (3b)
accurate. In various numerical tests all these integrators results from a fortunate cancelation of errors.
exhibit an O(h2) growth of global errors in agreement with Note, however, that Eqs. (2), (11) and Eqs. (3a), (3b) are
O(h3) order of the local truncation error [5, 6]. This occurs not equivalent. Equation (11) provides a leapfrog solution
even when no lower order approximations are involved, only if initial conditions match Eq. (3a). Note also, that
for instance, if Eq. (2) is used and the deviation of coordi- Eqs. (2) and (11) are coupled only via accelerations—no
nates from an analytical solution is checked [7]. Although relationship between coordinates and velocities is implied
these observations are not contradictory they are rather

a priori. Therefore, starting from arbitrary initial condi-
perplexing, but, however surprising, they are essentially tions a completely nonleapfrog trajectory may be pro-
ignored in the literature. The confusion clearly results from duced. The relationship between the general solutions of
approximations of velocities which are not included in Eq. Eqs. (2), (11), and (3a), (3b) presents an interesting ques-
(2), but since all these algorithms can produce the same tion, but it is beyond the scope of the present paper.
trajectory the difficulty is only formal and seems to present
no practical interest. We will now see that this reasoning B. Accumulation of Errors Along a Leapfrog Trajectory
involves a conceptual error with important consequences.

The truncation error is in fact only a part of the storyConsider the standard derivation of Eq. (2), which starts
because single-step errors can accumulate thus producingfrom two Taylor series from time t in opposite directions
so-called global errors [5, 6], which are relevant for assess-
ment of an algorithm and which, as noted above, exhibit
a characteristic O(h2) growth. Let us check how, in thex(t 1 h) 5 x(t) 1 ẋ(t)h 1

1
2

ẍ(t)h2 1
1
6

ẋ̈(t)h3 1 O(h4) (8a)
case of a leapfrog trajectory, truncation errors accumulate
for conventional testing procedures.

Suppose we have a trajectory of duration T; we computex(t 2 h) 5 x(t) 2 ẋ(t)h 1
1
2

ẍ(t)h2 2
1
6

ẋ̈(t)h3 1 O(h4).
some parameter Q[x(ti), v(ti)] at M time steps i 5 1, ..., M

(8b) and evaluate

Adding these two expansions gives Eq. (2), with all odd- DQ2 5
1
M OM

i51
DQ2

i 5
1
M OM

i51
[Q(ti) 2 Qa

0(ti)]2. (12)
order terms eliminated, and a resultant truncation error
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Here Qa
0(ti) is the corresponding analytical value computed Taking into account that xj21 , xj , and xj11 are related by

Eq. (2) summation of Eqs. (17a), (17b) yieldsfor an exact trajectory starting from the initial state. An
overbar here and below denotes time averaging. Now
we have

[ẋa
j11(t) 2 ẋa

j (t)]h 1 [ẋ̈a
j11(t) 2 ẋ̈a

j (t)]
h3

6

1 [ẍ̈a
j11(t) 1 ẍ̈a

j (t)]
h4

24
1 O(h5) 5 0.

(18)
DQi 5 Oi

j50
DDQj , (13)

Thus, except for the special case ẋa
j11(t) ; ẋa

j (t) we havewhere

ẋa
j11(t) 2 ẋa

j (t) 5 O(h3). (19)
DDQj 5 DQj11 2 DQj 5 Q(tj11) 2 Q(tj) 2 Qa

0(tj11) 1 Qa
0(tj)

Assuming that xa(t) are smooth enough, relation (19) can5 [Q(tj11) 2 Qa
j (tj11)] 1 [Qa

j (tj11) 2 Q(tj)]
be continued over a finite time interval and we may write2 [Qa

0(tj11) 2 Qa
0(tj)], (14)

where Qa
j (t) refers to the analytical trajectory starting from ẋa

j (tj) 2 ẋa
0(tj) 5 Oj

k50
[ẋa

k11(tj) 2 ẋa
k(tj)] P Oj

k50
bk h3

5 tj b(tj)h2,

(20)j th state in the numerical trajectory. Here only the first
bracket in the r.h.s. is contributed by the local truncation
error while the rest results from deviations of analytical
solutions corresponding to different initial conditions. Dis- where bk are constant coefficients and b(tj) results from
carding higher order terms one can rewrite Eq. (14) as averaging over interval (0, tj) for a sufficiently small step

size. Thus in Eq. (15) the second term appears to be O(h3)
and it dominates over the truncation error given by the

DDQj P aj hm 1 [Q̇a
j (tj) 2 Q̇a

0(tj)]h, (15)
first term. Now, by performing the summation in Eq. (13)
similarly to Eq. (20), we see that the deviation of the
leapfrog trajectory from an analytical solution must be ofwhere aj are constant coefficients and, for the leapfrog
the order of O(h2) in agreement with usual conclusionsscheme, m 5 4.
[7]. We see, therefore, that the square growth of the devia-In the general case both terms in the r.h.s. of Eq. (15)
tion of the coordinates from an analytical trajectory has amust be taken into consideration. Let us check the case
more complicated origin than the simple accumulation ofwhen Q is just the coordinate and so Eq. (12) estimates
truncation errors and it does not contradict the O(h4) trun-deviation from an analytical trajectory. Let xa

j (t) and
cation error of the algorithm.xa

j11(t) be two analytical solutions of Eq. (1) with bound-
Now let us consider the case when Q is the total energy.ary conditions

For any analytical solution its time derivative is zero and
DDEj in Eq. (15) appears to be O(h4). The same result

xa
j (t 2 h) 5 xj21 , xa

j (t) 5 xj , (16a) is obtained with the average total energy instead of the
analytical value in Eq. (12). Summation in Eq. (13) nowxa

j11(t) 5 xj , xa
j11(t 1 h) 5 xj11 , (16b)

gives the global error on the order of O(h3), that is one
order higher than the common conclusion [5, 14]. There

where xj21 , xj , and xj11 are successive points on a numerical is one complication, however, which was missed in the
trajectory. We have above derivations. We tentatively assumed in Eq. (14) that

for any state on a numerical trajectory one can find a
reference analytical solution passing through this state.

xa
j11(t 1 h) 5 xj 1 ẋa

j11(t)h 1 f(xj)
h2

2
1 ẋ̈a

j11(t)
h3

6 For the next-step total energy to deviate as O(h4) both
coordinates and velocities must be within O(h4) of this
reference trajectory, which, in turn, requires that it pass1 ẍ̈a

j11(t)
h4

24
1 O(h5) (17a)

through both (xn , xn21) and (vn21/2 , vn23/2), according to
Eqs. (2) and (11), respectively. However, since Eq. (1) is

xa
j (t 2 h) 5 xj 2 ẋa

j (t)h 1 f(xj)
h2

2
2 ẋ̈a

j (t)
h3

6 only of second order, such an analytical solution does not
necessarily exist. In the general case, we have two different
analytical trajectories corresponding to coordinates and

1 ẍ̈a
j (t)

h4

24
1 O(h5). (17b)

velocities and the overall single-step error in the total en-
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ergy has a contribution from incoherence between these quantity with the dimension of energy which is exactly
conserved along the numerical trajectory. In the generaltrajectories. On the other hand, if we use as a reference

an analytical trajectory passing through a leapfrog state or case a numerical ‘‘first integral’’ analogous to « does not
exist, but it is very useful in analytical derivations and givesa velocity Verlet state we obtain O(h3) single-step devia-

tion and O(h2) global error, but this is only an upper the possibility to reveal certain qualitative features intrinsic
in the common approaches to the estimation of the on-stepestimate because it does not take into account the cancel-

ation of local errors which allows solutions of Eqs. (3a), total energy. Consider the most common approximation of
the on-step total energy for the leapfrog scheme(3b) to fit higher order equations (2) and (11). We con-

clude, therefore, that the global error in the total energy
for a leapfrog trajectory must be between O(h2) and O(h3),

En
lf 5

1
2 F1

2
(v2

n21/2 1 v2
n11/2) 1 g2x2

nG5 « 1
t 2

2
Un , (25)but it may depend upon the specific properties of Eq. (1).

That is why the order of global errors in this case cannot
be estimated analytically a priori, and should rather be

where t 5 gh is the reduced step size. Here we made ameasured numerically. We will see in the next section,
substitution of Eqs. (22a) and (24) and denoted potentialhowever, that this appears difficult.
energy as Un . As expected, the total energy is not constant
and it fluctuates with a small amplitude on the order ofC. Effects of Interpolations of Kinetic Energy
O(t 2). The relative fluctuation, sometimes used as a conve-

We are going to show here that the common approach nient indicator of the accuracy of the trajectory, is simply
to testing energy conservation in molecular dynamics in
the case of the leapfrog scheme in fact fails to evaluate
the true error of the algorithm because of a dominating qlf 5

D[Elf ]
D[U]

5
t 2

2
, (26)

contribution of additional interpolations necessary to com-
pute on-step kinetic energies. Following many previous

where D[ ] denotes the operator of variance. The fluctuat-studies, we first consider a simple harmonic oscillator as a
ing term in Eq. (25) is usually used to check for the accuracymodel case suitable for analytical treatment. This simple
and stability of a computed trajectory. One can note, how-model appears to have a significant predictive power be-
ever, that the analytical form of this term is somewhatcause the fastest motions in real systems are nearly har-
suspicious. Namely, it could have been expected that amonic. We will check this on a more realistic example of
numerical fluctuation of an analytically constant value hasprotein dynamics.
a more complicated form than just a scaled oscillation ofConsider an oscillator with the Hamiltonian
the potential energy. In order to make clear the origin of
this oscillation let us consider the related value for an exact

H 5
1
2

(ẋ2 1 g2x2) (21) analytical trajectory of an oscillator with x(0) 5 0 and
v(0) 5 g. We have

and the leapfrog equations of motion

En
lf 5

g2

2 H1
2 Fcos2 g St 2

h
2D1 cos2 g St 1

h
2DG1 sin2 gtJ

vn11/2 2 vn21/2 5 2g2xn h (22a)

xn11 2 xn 5 vn11/2h. (22b)
5 Ea S1 2

t 2

4 D1
t 2

2
U(t) 1 O(h4), (27)

It is known that these finite difference equations have an
analog of the total energy [2]. By multiplying Eq. (22a) by where Ea and U(t) are analytical total and potential energ-
(vn11/2 1 vn21/2) with simple algebra one obtains ies, respectively. Comparison of this result with Eq. (25)

shows that the O(t 2) oscillation is exactly same for the
numerical trajectory as for the analytical one suggesting1

2
(v2

n11/2 1 g2xn xn11) 5
1
2

(v2
n21/2 1 g2xn21 xn) 5 «1 . (23)

that it is introduced by the interpolation and has no relation
to the accuracy of the trajectory. In order to validate this

Similarly, by multiplying Eq. (22b) by (xn11 1 xn) we obtain suggestion let us check what one gets when more accurate
interpolation formulas are employed. Consider the inter-
polation1

2
(vn21/2vn11/2 1 g2x2

n) 5
1
2

(vn23/2vn21/2 1 g2x2
n21) 5 «2 (24)

Kn 5
1
8

(3Kn11/2 1 6Kn21/2 2 Kn23/2) 1 O(h3), (28)
and it is easy to check that «1 5 «2 5 «. Thus, there is a
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where Kn21/2 denotes the half-step kinetic energy. It is not
difficult to check that when applied to an exact trajectory
it gives an O(t 3) oscillation around the correct total energy.
For the leapfrog solution, derivations similar to that used
for Eq. (25) result in

En
3 5 « S1 1

t 2

4 D1
t 3

2
gxnvn21/2 2

t 4

8
Kn21/2 . (29)

Again we see that the amplitude of the oscillation scales
as the order of the interpolation. Note that its phase is
shifted by f/2 from that of Elf . For the following discussion
we need one more interpolation

Kn 5
1
48

(15Kn11/2 1 45Kn21/2 2 15Kn23/2 1 3Kn25/2) 1O(h4)

(30)

which gives

En
4 5 « S1 1

t 2

2 D1
t 4

16
(5Kn21/2 1 Kn23/2 2 4Un21) (31)

with O(t 4) oscillation, as expected. E4 oscillates in phase
with the kinetic rather than with potential energy, which
means that it is shifted by f from Elf .

One might conclude that in this special case the total
energy is conserved exactly with any time step size. We
will later see, however, that actually the leapfrog trajectory
deviates from an exact constant energy hypersurface, but
these deviations are regular and they appear to be compen-
sated by the approximation errors of the interpolation for-
mulas. This occasional cancelation certainly results from
the fundamental solutions of the finite difference equation
(2) being sine and cosine functions [2], but it is rather
instructive because it demonstrates that interpolations can
produce very misleading effects. The most interesting for
us, however, is the form of the oscillations produced by the
interpolation formulas. We will now see that qualitatively
similar behavior is observed in real simulations.

Figures 1–3 present a 50 fs interval of a molecular dy-
namics trajectory computed with three different time steps:
0.5 fs, 0.1 fs, and 0.05 fs, respectively. The system modeled
consists of an immunoglobulin binding domain of strepto-

FIG. 1. Time dependence of the potential energy (a) and the total
energy (c)–(d) for an unconstrained protein molecule. All energies are
in kcal/mole. The molecular dynamics trajectory was computed with the
leapfrog algorithm and a time step of 0.5 fsec. Three different estimates
of the total energy for figures (c)–(d) were obtained with interpolations
of second, third and fourth order, respectively, applied to half-step kinetic
energies. The average total energy subtracted from the instantaneous
values in figures (c)–(d) was 254.68 kcal/mole.
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FIG. 3. Same as Fig. 1, but with molecular dynamics trajectory com-FIG. 2. Same as Fig. 1, but with the molecular dynamics trajectory
computed with a time step of 0.1 fs. The average total energy in Figs. puted with a time step of 0.05 fs. The average total energy in Figs. (c)–(d)

was 255.51 kcal/mole.(c)–(d) was 255.42 kcal/mole.
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coccal protein G [19] which is a 56 residue a/b protein 3d shows that the amplitude of the remaining fluctuation
scales faster than O(h2) but slower than O(h3), as we ex-subunit (file 1pgb in the Protein Database [20]) with 24

bound water molecules presented in the crystal structure. pected. If scaled back to the step size of 0.5 fs used in Fig.
1 this fluctuation can account for only a few percentagesAll hydrogens are considered explicitly thus giving 927

atoms. The trajectory was computed without constraints of the whole amplitude, which indicates that the total en-
ergy is really much better conserved than it appears to be. Itupon the protein structure and with TIP3P water molecules

held rigid. Other details of the simulation protocol are is interesting that the high-frequency harmonic oscillation
that dominates in Figs. 1b–d essentially disappears in Figs.given in Section IID below. In such a system the fastest

oscillations are due to bond stretching of hydrogens with 2d and 3d, suggesting that harmonic motions in the system
really do not contribute to the apparent fluctuation of thea period of about 10 fs, which is clear in the time profiles

of the potential energy shown in Figs. 1a–3a. Figures 1b–3b total energy, which is produced by slower anharmonic mo-
tions.show the time profile of the total energy computed by Eq.

(25). Note that according to Eqs. (25), (29), and (31) the Let us now summarize the above results. In the case of
an oscillator, fluctuations are produced by interpolationsamplitude of the oscillation of the total energy grows with

the frequency, which means that, in systems of many oscil- only, their phases and amplitudes are related to those of
the kinetic and potential energies in a simple way. For alators, interpolations tend to filter lower frequencies. It is

not surprising therefore that in Figs. 1b–3b the highest realistic microcanonical ensemble with all common types
of interactions, the total energy behaves similarly for thefrequency strongly dominates compared with Figs. 1a–3a.

Note, however, that in all three figures Elf oscillation has second- and third-order interpolations, as well as with the
fourth-order one at a moderately small step size. For anexactly the same phase as that of the potential energy.

The profiles of the potential energy in Figs. 1a–3a are extremely small step size, however, a qualitative difference
is observed between the fourth and lower order interpola-indistinguishable, which means that with a step size of 0.5

fs the trajectory is perfectly accurate. In agreement with tions. All this agrees very well with the global error in the
total energy between O(t 2) and O(t 3) corresponding tothe simple case considered above the shapes of the profiles

of the total energy in Figs. 1b–3b also appear to be indistin- O(t 4) local error in the trajectory. Although the trajectory
contribution can be revealed by interpolations of the fourthguishable, with the amplitude of the oscillation scaled as

the square of the step size. The identity of the three profiles and higher orders, with practical time step values, the inter-
polation errors always dominate overwhelmingly. Takingin this case is not evident a priori and it is difficult to

explain unless the above observations for an oscillator are into account that, because of the rapid growth of higher
derivatives on repulsive walls of non-bonded potentials,not invoked. Thus, despite the simplicity of the model

employed, Eq. (25) very accurately predicts both the higher order interpolations tend to be less accurate in ‘‘less
harmonic’’ systems, we are obliged to conclude thatgrowth rate with the step size and the shape of the fluctua-

tion of the total energy in a much more complex system. straightforward interpolations in principle cannot ade-
quately evaluate instantaneous on-step velocities and ki-Now consider the time profiles of the total energy com-

puted with higher order interpolations. Figures 1c and 1d netic energies in the case of the leapfrog scheme. This
approach, therefore, should not be used for assessing theshow that both E3 and E4 behave similarly to Elf and as

predicted by Eqs. (29) and (31). Note that the oscillations accuracy of the algorithm.
of E3 and E4 are shifted by f//2 and f, respectively, from
Elf in Fig. 1b. With a reduced step size, however, both E3 D. Alternative Strategy for Checking
and E4 reveal some new features. Similarly to Elf the E3 Energy Conservation
oscillation in Figs. 2c and 3c remains dominated by high-
frequency oscillation, although its overall profile slightly In this section we consider how numerical tests with

microcanonical ensembles can be arranged so that the realchanges. It is easy to see that the amplitude of the high-
frequency oscillation scales as O(h3) and that the change accuracy of conservation of the total energy can be as-

sessed. The main idea is simple. Note that all interpolationsin the profile is likely to be due to an underlying fluctuation
which scales slower than O(h3). Finally, for E4 oscillation of the kinetic energy such as Eqs. (28) and (30) give the

same average kinetic energy. For any sufficiently long ana-in Figs. 2d and 3d we observe a profile of the fluctuation
qualitatively different from those in Figs. 1a–d. The ampli- lytical trajectory these interpolations, upon averaging, re-

sult in a correct average kinetic energy and, consequently,tude of the oscillation in Fig. 1d reduced by factors of 625
and 104 in Figs. 2d and 3d, respectively, would present a exact total energy. This property does not depend upon

the specific form of the Hamiltonian or the number ofnegligible part of the remaining fluctuation and that is why
this hidden profile is revealed. This residual deviation of degrees of freedom. Note, for example, that in Figs. 1–3

with the same step size, Elf , E3 , and E4 oscillate around thethe total energy can be attributed to the interpolation-free
error of the trajectory itself. Comparison of Figs. 2d and same average. At the same time there is a distinguishable
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difference between the averages for the three given values From Eqs. (35) and (36) by using a Taylor series expansion,
we obtainof the step size. We see, therefore, that unlike instanta-

neous energies, their time averages appear to be free from
interpolation errors and they represent adequate indicators
of the accuracy of the energy conservation.

Suppose we know the analytical value of the total energy.

Ea

E lf

5 1 1 Ft 3

48
1 O(t 5)G sin 2gt

2 Ft 4

96
1 O(t 6)G cos 2gt 2

t 4

96
2

t 6

64
1 O(t 8).

(37)
We could then repeatedly calculate a long enough test
trajectory with gradually growing time steps and compare
the average total energy with the analytical one. As long
as these two values are close to each other, the computed The r.h.s. of Eq. (37) involves two qualitatively different

types of deviations. The first depends upon the currenttrajectory remains close to a correct hypersurface in phase
space. Instead of the unknown analytical total energy, we phase of the oscillation and it in fact presents the true

measure of the energy conservation along the trajectory:can use that obtained for the same trajectory with a very
small step size. It is important to make sure, however, that as long as the phase-dependent terms in Eq. (37) are small,

all states on the trajectory belong, or are close, to the samethe test trajectory starts from the same state on a fixed
constant-energy hypersurface with each step size, which is exact constant energy hypersurface. When these terms be-

come too large, successive leapfrog states correspond tonot automatic in the case of the leapfrog scheme. Let us
consider the implementation of this testing procedure for different hypersurfaces, but the corresponding analytical

total energies oscillate around a certain value. The seconda harmonic oscillator.
By using Eqs. (22a) and (24) one can derive an identity type of deviation is phase-independent and it is presented

by the fourth- and sixth-order terms. Because of this devia-
tion, with large step size all leapfrog states appear to belong

Un ; «

2
1

1
2 FUn 2

1
2

(Kn21/2 1 Kn11/2)G1
t 4

4
Un . (32) to hypersurfaces of a systematically lower energy than the

computed average value, which means that they are no
longer sampled ergodically. The magnitudes of both these

Denoting types of deviations can be easily evaluated, and it turns
out that for t & 1.1 the fluctuating part dominates, while
above this level the phase-independent contribution rap-

dn 5 Un 2
1
2

(Kn21/2 1 Kn11/2), (33) idly becomes overwhelming due to its sixth-order growth.
Now consider what one would observe in the numerical

tests outlined above. It can be seen from Eq. (35) that bywe obtain
simply increasing the step size one obtains an O(t) regular
growth of U and Elf . It is clear, however, that, in this case,
the starting leapfrog state in phase space is effectivelyUn 5

1
2(1 2 t 2/4)

(« 1 dn). (34)
moved from one constant energy hypersurface to another,
which results in a regular drift of averages. In order to

It can be shown by a straightforward solution of the finite remove this drift, the trajectory should start from the same
difference Eqs. (22a), (22b), that within the time step range hypersurface, that is from x0 and v21/2 corresponding to
of stability of an oscillator U 5 K . Therefore dn presents the same analytical trajectory. It is easy to see that this
an oscillation around a zero average and we have case is also described by Eq. (37) if it is read in an opposite

sense. Namely, now Ea and the phase of the oscillating
terms on the right are constant because they correspond

E lf 5 2U 5
«

(1 2 t 2/4)
. (35) to the initial constant energy hypersurface and the phase

of the starting state. Equation (37) therefore describes the
step size dependence of Elf which beyond t P 1.1 shouldLet us now check how accurately the numerical average
rapidly deviate upward from its zero step size limit. It turnstotal energy approximates exact values, that is total energ-
out that this estimate holds quite well for representativeies corresponding to constant-energy hypersurfaces sam-
molecular models as well, which is illustrated by Fig. 4.pled by a leapfrog trajectory. Consider an analytical trajec-

This figure presents an example of application of thetory passing through a leapfrog state (vn21/2 , xn). We have
proposed test to protein dynamics. The simulations were
made by AMBER molecular modeling program [21] with
AMBER94 force field [22]. The system considered was« 5 Ea Hsin2 gt 1 cos g St 2

h
2DFcos g St 2

h
2D2 t sin gtGJ.

same as in Figs. 1–3, that is with only water bond lengths
and bond angles constrained by the SHAKE algorithm(36)
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data. The last point was used as the starting state for a
10 ps test trajectory which was computed with gradually
growing step sizes and half-step velocities taken at appro-
priate time intervals from coordinates.

In order to apply our test to a real molecular system
we should also take into account that, since in common
empirical potentials the absolute value of the potential
energy involves many nonharmonic contributions which
always remain far from zero, it is no longer sensible to
compare the deviations with the absolute energy values.
An appropriate natural scale, however, is given by the
variance of the instantaneous potential energy over the
test trajectory. One may reasonably consider for U the
deviation of 60.1D[U], for instance, as an acceptable level
of accuracy. Note that in the oscillator case this gives ap-
proximately same criterion as above. The deviation of Elf

should be two times larger because it involves a similar
contribution from the kinetic energy.

Figure 4a shows the step size dependence of D[U]. The
dotted line in this figure shows the low step size level used
to plot the corresponding bands of acceptable accuracy in
Figs. 4 (b) and (c). As seen in Fig. 4(b) the fluctuation of
U remains within the band 60.1D[U] up to a time step of
1.7 fs. These fluctuations are relatively large because they
are affected by rare conformational transitions which can-
not be averaged during a test trajectory. Oppositely, Elf

shown in Fig. 4c grows steadily, but its deviation also re-
mains within the band of acceptable accuracy up to the
same step size. Assuming that this value corresponds to
t P 1.1 one obtains a frequency of 3400 cm21, that is exactly
that of bond stretching of peptide hydrogens. The whole
spectrum of bond stretching modes of hydrogens covers the
range 3000–3700 cm21, which corresponds to characteristic
step sizes in the range 1.6–1.9 fs. We may conclude, there-
fore, that Fig. 4 demonstrates a good agreement with the
single oscillator model considered above.

At this point it is convenient to compare our step size
estimates with the common recommendations. Although
no strict rules exist, it is usually considered that the com-

FIG. 4. Time step dependencies of the potential energy (b), its time puted trajectory provides an acceptably accurate sampling
variance (a) and the total energy (c) computed over a 10 ps molecular when the relative fluctuation qlf given by Eq. (26) is less
dynamics trajectory. All energies are in kcal/mole. The dotted lines in

than 0.1, which gives t & 0.4, i.e., at least 14 time steps(b) and (c) show the corresponding bands of acceptable deviation defined
per single cycle of the oscillation. Our estimates show thatas described in the text from the low time step limit of variance indicated

by the dotted line in (a). actually this level of accuracy is reached with an almost
three times larger time step, although in this case qlf is
already so large that the energy conservation seems to be
lost. In practice, however, the above recommendations are[23]. Initial data for these tests were prepared as follows.

The equilibration was more or less standard and included almost never respected and most often molecular dynamics
trajectories are computed with less than 10, or even lessminimization of the crystal structure followed by a 12.5 ps

run starting from Maxwell distribution at 300K with peri- than 5 steps, per the shortest cycle [24]. This practice thus
appears to be well justified and it is clear from Fig. 4 thatodic temperature control and a step size of 0.5 fs. After that

the step size was reduced to 0.25 fs and a short trajectory of the leapfrog trajectory really manages to hold to a constant
energy hypersurface with somewhat larger time steps than150 fs was calculated, with the final part stored and used

in place of an analytical trajectory for generating initial commonly recommended.
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E. Leapfrog Scheme versus Its Relatives velocity Verlet states (xn , vn) or by leapfrog states (xn ,
vn21/2). According to Eq. (37), the leapfrog states sample

In this section we will demonstrate that, contrary to the
from constant energy hypersurfaces which are O(t 3) close

conventional point of view, the leapfrog scheme exhibits
to each other, while in the former two cases a broader

exceptional properties compared with the other algorithms
O(t 2) spectrum of energies is covered. In this sense one can

of this group.
say that the leapfrog trajectory presents the most accurate

The results obtained in Section IIC above obviously are
sampling among the three representations.

not applicable to the velocity Verlet and Beeman algo-
rithms, Eqs. (4)–(5). In these cases, interpolations appear

III. CONCLUSIONSto be built into the algorithms, which makes them only
O(h3) accurate in velocities. (Note that interpolation (7)

The results presented in the paper shed some light uponhas the same order of truncation as that in Eq. (6).) Oscilla-
the long-standing confusion involved in the conventionaltions of the instantaneous total energy result from the
interpretation of the common algorithms of the classicalalgorithms themselves and they grow simply as O(h2) in
molecular dynamics. The main practical result is a newagreement with the order of the truncation error. Let us
simple testing scheme for energy conservation, which giveslook more thoroughly at the total energy computed by the
a better estimate of the quality of leapfrog trajectories. Itvelocity Verlet integrator. Similarly to Eq. (25) we obtain
is shown that the leapfrog trajectories provide accuratefor the oscillator
sampling in phase space with large time step values, when
the apparent total energy obtained by routine interpola-
tions is no longer conserved. This explains the recognizedEn

vv 5
1
2 F1

4
(vn21/2 1 vn11/2)2 1 g2x2

nG5 « 1
t 2

4
Un . (38)

quality of thermodynamic averages at large step size. The
new testing scheme should be particularly useful for study-

We see that Evv behaves similarly to Elf with two times ing the time step limitations in various molecular models
smaller amplitude of the oscillation and always Evv , Elf , appearing in internal coordinate molecular dynamics simu-
which means that, in the case of velocity Verlet, the temper- lations of polymers [25].
ature estimated for the same trajectory is somewhat lower.
In real simulations qvv is normally smaller by a factor of
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